ТЕРМОРЕГУЛИРУЮЩИЕ ВЕНТИЛИ ТЕРМОГОЛОВКА СЕРИЯ 970-1100

ОПИСАНИЕ

Термостатические вентили предназначены для регулировки подачи теплоносителя в радиатор, с целью обеспечения необходимой температуры в помещении. При подключении термостатической головки, регулировка комнатной температуры, происходит в автоматическом режиме.

При помощи термоголовки, в помещении поддерживается заданный температурный уровень, что позволяет

экономить теплоэнергию, и оберегает от тепловых потерь.

ТЕРМОРЕГУЛИРУЮЩИЕ ВЕНТИЛИ

970-972-966

974

971-973-967

975

ТЕРМОСТАТИЧЕСКАЯ ГОЛОВКА

1100

АССОРТИМЕНТ

ТЕРМОРЕГУЛИРУЮЩИЕ ВЕНТИЛИ – МЕДНАЯ, ПЛАСТИКОВАЯ, МЕТАЛЛОПЛАСТИКОВАЯ ТРУБА

Угловые вентили	Фитинг	Радиатор
970 угловой терморегулирующий вентиль для медной, пластиковой и Ре-х трубы	M24x1.5	G1/2" - G3/8"
972 угловой терморегулирующий вентиль для медной, пластиковой и Ре-х трубы	G1/2"	G1/2" - G3/8"
966 угловой терморегулирующий вентиль для медной, пластиковой и Ре-х трубы	G3/4"	G1/2"
Прямые вентили		
971 прямой терморегулирующий вентиль для медной, пластиковой и Ре-х трубы	M24x1.5	G1/2" – G3/8"
973 прямой терморегулирующий вентиль для медной, пластиковой и Ре-х трубы	G1/2"	G1/2" - G3/8"
967 прямой терморегулирующий вентиль для медной, пластиковой и Ре-х трубы	G3/4"	G1/2"

ТЕРМОРЕГУЛИРУЮЩИЕ ВЕНТИЛИ – ЖЕЛЕЗНАЯ ТРУБА

Угловые вентили 974 прямой терморегулирующий вентиль для железной трубы Прямые вентили

975 прямой терморегулирующий вентиль для железной трубы

Фитинг и радиатор G3/8" - G1/2" - G3/4"

G3/8" - G1/2" - G3/4"

TEPMO	CTATI	1ЧЕСКАЯ	ГОЛОВКА
--------------	-------	---------	---------

Артикул 1100 термостатическая головка

Код 821100AC20 Подключение M28x1.5

ФИТИНГИ ДЛЯ ПОДКЛЮЧЕНИЯ К ТРУБЕ

Для подключения терморегулирующих вентилей ІСМА к медной, пластиковой и металлопластиковой трубе, используйте следующие фитинги:

·	
Артикул	Резьба фитинга
90 Запатентованный фитинг SICURBLOC для медной трубы	G1/2" - M24x1,5
93 Фитинг евроконус с кольцевой прокладкой, для медной трубы	G3/4"
98 фитинг для пластиковой и металлопластиковой трубы	G1/2"
100 фитинг для пластиковой и металлопластиковой трубы	M24x1,5
101 фитинг для пластиковой и металлопластиковой трубы	G3/4"
119 фитинг для пластиковой и металлопластиковой трубы	G3/4"

ТЕРМОРЕГУЛИРУЮЩИЕ ВЕНТИЛИ

На все терморегулирующие вентили данной серии, можно установить термостатические головки ICMA, для автоматической регулировки комнатной температуры.

Для установки термоголовки, нужно заменить ручку управления на термоголовку, как показано в разделе «установка и настройка термостатической головки». Термостатические вентили ICMA имеют 2 конфигурации: прямую и угловую. Подключение возможно к двум типам труб:

Железная труба – вентили с газовой резьбой (резьба подключения к системе).

Медная, пластиковая и металлопластиковая труба – вентили для которых предназначены специальные фитинги для подключения к трубе.

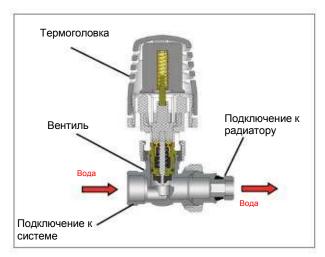
Терморегулирующие вентили ICMA оснащены запатентованным патрубком «Антипротечка», который обеспечивает простое, но надежное подключение к радиатору без применения пакли, фумленты и других материалов для герметичности соединения. Потери нагрузки указаны в диаграммах, расположенных в конце данной технической инструкции.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Теплоноситель
Макс.концентрация гликоля
Макс.рабочее давление
Макс.дифференц.давление
Температура теплоносителя
Бег затвора вентиля
Подключение термоголовки

Вода, гликоль 50% 10 Бар 1 бар (с термоголовкой) 5 ÷ 120°C 3,5 мм M28x1,5 Материалы Корпус, американка, патрубок

Кран-букса Пружина и шток затвора Прокладки Ручка управления Латунь CW617N - UNI 12165 Никелировка Латунь CW614N - UNI 12164 Нержавеющая сталь Пероксидный каучук EPDM Белый ABS RAL 9010


УСТАНОВКА ВЕНТИЛЯ

При установке термостатического вентиля необходимо соблюдать направление потока теплоносителя: вход - со стороны системы, выход - в сторону радиатора.

ВНИМАНИЕ! В случае некорректной установки вентиля возможны следующие проблемы:

- -Громкий стук похожий на стук молотка, связан с перевернутым положением «вход-выход» теплоносителя. Единственный способ устранить эту проблему, заново установить вентиль в правильном положении.
- Громкий свист. Связан с высоким напором воды в вентиле. Для устранения необходимо отрегулировать, и контролировать давление в системе. Желательна установка модуляционного насоса и регулятора дифференциального давления или байпасного вентиля дифференциального давления.

РЕМОНТ (ЗАМЕНА ПРОКЛАДОК САЛЬНИКА)

На всех термостатических вентилях ІСМА возможна замена прокладок, без слива воды из системы. Для этого, осуществите следующие шаги:

Открутите сальник при помощи ключа 14мм, как показано на рисунке.

Теперь прокладки можно заменить.

Артикулы для заказа:

P10002043 P10002243

Закрутите сальник при помощи ключа 14мм, как показано на рисунке.

ТЕРМОСТАТИЧЕСКАЯ ГОЛОВКА

Термостатическая головка предназначена для автоматической регулировки и поддержания комнатной температуры на выбранном пользователем значении. Часто, в помещениях, находятся дополнительные источники тепла: солнечный свет, бытовые электроприборы, компьютеры, кухонные плиты, и т.п.

Данные источники тепла, вызывают перегрев помещения, и приводят к ненужному перерасходу топлива в системе отопления, если нет автоматической регулировки комнатной температуры.

Термостатические головки, чувствительны к подобным изменениям температуры, и оптимизируют расход тепловой энергии, обеспечивая значительную экономию расхода тепла.

Все вентили данной серии, подходят для установки термостатической головки арт. 1100.

Термостатические вентили ІСМА, серийно поставляются с пластиковой ручкой для работы в ручном режиме регулировки температуры. После установки термостатической головки, вентиль работает исключительно в автоматическом режиме.

Для установки термоголовки 1100, нужно заменить пластиковый колпачок на термоголовку, как показано в разделе «установка и настройка термостатической головки».

1100

ШКАЛА РЕГУЛИРОВКИ ТЕМПЕРАТУРЫ

Шкала регулировки Диапазон регулировки температуры

☆ ÷5 7 ÷ 28°C

★ Символ снежинки * соответствует 7°С, и обеспечивает режим «антизамерзание».

SCALA DI REGOLAZIONE

0°C	7°C	12°C	16°C	20°C	24°C	28°C
0	*	1	2	3	4	5

ТЕРМОРЕГУЛИРУЮЩИЕ ВЕНТИЛИ ТЕРМОЛОГОЛВКА СЕРИЯ 970-1100

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ХАРАКТЕРИСТИКИ

Минимальное значение (антизамеразание)	ts min	7 °C (🗱
Максимальное значение (положение)	ts max	28 °C (5)
Экономный режим (положение)		20 °C (3)
Максимальное рабочее давление	PN	1000 KPa
Максимальное дифференциальное давление	Δр	100 KPa
Номинальный расход воды" прямой-угл. вентиль	qm N	190 кг/ч
Макс. рабочая температура		110 °C
Макс. температура хранения на складе		50 °C
Гистерезис	С	0.25 K
Влияние вентиля на комнатную температуру	a	0,9
Время реагирования	Z	20 минут
Влияние дифференциального давления	D	0,25 K
Влияние температуры воды	W	0,7 K
Подключение к термостатическому вентилю		M28x1,5

Термоголовка сертифицирована UNI - EN215

ТЕРМОРЕГУЛИРУЮЩИЙ ВЕНТИЛЬ ПОСТАВЛЯЕТСЯ В КОМПЛЕКТЕ С РУЧКОЙ ДЛЯ РУЧНОЙ РЕГУЛИРОВКИ ТЕМПЕРАТУРЫ.

Материалы

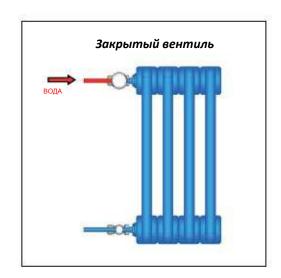
Ручка Пластик ABS. Белый цвет RAL 9010

Корпус PA6 30% F.V. RAL 9010

Жидкостной элемент Этилацетат

Крепежное кольцо Латунь CW614N - UNI 12164 - Никелировка

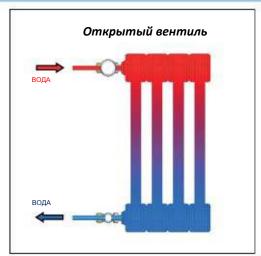
Штифт компенсатора Латунь CW614N - UNI 12164


Пружина штифта компенсатора Фосфатная сталь

ПРИНЦИП ДЕЙСТВИЯ

Термостатическая головка состоит из пластикового корпуса, и деталей, внутри которых скрыт теплочувствительный элемент. Данный элемент, работает по принципу расширения и уменьшения термостатической жидкости содержащейся в нем.

-При росте температуры в помещении, термостатическая жидкость расширяется, и термостатический элемент увеличивается размере. -При снижении комнатной температуры, термостатическая жидкость уменьшается в объеме, и термостатический элемент укорачивается.


Изменение длины термостатического элемента передается вентилю при помощи стального штифта компенсатора. Вследствие чего, вентиль автоматически открывается или закрывается, в зависимости от изменения комнатной температуры. Компоненты термостатической головки специально сделаны из пластика, чтобы тепло от радиатора не влияло на термостатический элемент и его работу.

Для регулировки температуры на термостатической головке, необходимо повернуть пронумерованную ручку, до индикатора значения температуры. Для большей информации, ознакомьтесь со следующим параграфом техописания.

- -Положение 3 на ручке соответствует 20 оС. Это рекомендованное значение комфортной температуры помещения, при которой значительно сокращаются расходы на отопление.
- Символ * снежинки это положение режима «антизамерзание». Данный режим рекомендован при длительном отсутствии в зимний период, или для поддержания небольшой температуры в помещениях с низкой температурой. В этом положении вентиль открывается, если температура помещения снижается ниже 6°C.

ПОЛОЖЕНИЕ ТЕРМОГОЛОВКИ

Рекомендовано устанавливать термостатические головки ICMA только в горизонтальном положении.

Другие способы установки, негативно влияют на работу термоголовки.

ПОЛОЖЕНИЕ РАДИАТОРА

Нельзя устанавливать термоголовки:

- внутри декоративных ниш,
- внутри декоративных шкафов,
- под прямыми лучами солнечного света,
- за шторами.

Несоблюдение этих правил, приведет к некорректной работе термоголовки, и как следствие всей системы отопления.

УСТАНОВКА И РЕГУЛИРОВКА ТЕРМОСТАТИЧЕСКОЙ ГОЛОВКИ

ПОДГОТОВКА К УСТАНОВКЕ ТЕРМОГОЛОВКИ

Открутить белую ручку против часовой стрелки, и снять ее с вентиля.

Снять ручку с вентиля и сохранить ее в качестве запасной части.

Полученный результат.

УСТАНОВКА ТЕРМОСТАТИЧЕСКОЙ ГОЛОВКИ

Установите термоголовку в положение 5. Это облегчит дальнейший монтаж.

Установите термоголовку, таким образом чтобы индикатор был хорошо виден.

Накрутите головку на вентиль, и зафиксируйте ее на корпусе. Несколько раз прокрутите ручку, вперед-назад.

РЕГУЛИРОВКА ТЕМПЕРАТУРЫ

Цифры на ручке от 0 до 5, соответствуют определенным температурным значениям, с которыми Вы можете ознакомиться в таблице справа. Для выбора нужной температуры установить индикатор на выбранную цифру.

SCALA DI REGOLAZIONE

0°C	7°C	12°C	16°C	20°C	24°C	28°C
0	*	1	2	3	4	5

БЛОКИРОВКА ЗНАЧЕНИЯ ТЕМПЕРАТУРЫ

Установить ручку на цифру от 0 до 5. На примере выбрана цифра 2 (16 оС).

В нижней части термоголовки, те же цифры. Обратите внимание на отверстия, до и после выбранной цифры (на примере цифра 2).

Установить блокировочную шпильку в оба отверстия, до упора. Температура заблокирована на выбранном значении.

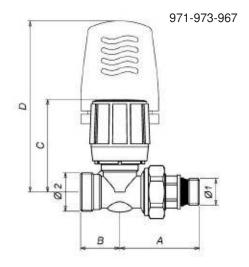
ОГРАНИЧЕНИЕ ТЕМПЕРАТУРЫ

Для ограничения хода термоголовки и выбранной температуры, обратите внимание на два отверстия сразу после цифры обозначающей температуру.

Вставьте шпильку в оба отверстия, до упора. Теперь термоголовка сможет двигаться только до этого значения температуры.

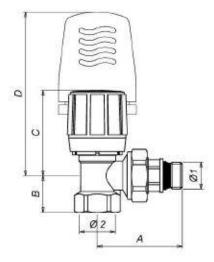


Шпилька заказывается, и продается отдельно от термоголовки. КОД ШПИЛЬКИ 111100AC06

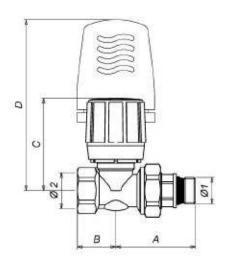


РАЗМЕРЫ И АРТИКУЛЫ

ТЕРМОСТАТИЧЕСИЙ ВЕНТИЛЬ ДЛЯ МЕДНОЙ, ПЛАСТИКОВОЙ И М/П ТРУБЫ



CODICE	Ø1	Ø2	Α	В	С	D
82970AC06	G3/8"	M24X1.5	53	24	53	102
82970AD06	G1/2"	M24X1.5	55	24	53	102
82972AC06	G3/8"	G1/2"	53	24	53	102
82972AD06	G1/2"	G1/2"	55	24	53	102
82966AD06	G1/2"	G3/4"	55	24	53	102



	2	2 2				
CODICE	Ø1	Ø2	Α	В	С	D
82971AC06	G3/8"	M24X1.5	50	24	58	107
82971AD06	G1/2"	M24X1.5	51	24	58	107
82973AC06	G3/8"	G1/2"	50	24	58	107
82973AD06	G1/2"	G1/2"	51	24	58	107
82967AD06	G1/2"	G3/4"	51	24	58	107

ТЕРМОСТАТИЧЕСКИЙ ВЕНТИЛЬ ДЛЯ ЖЕЛЕЗНОЙ ТРУБЫ

код	Ø1	Ø2	Α	В	С	D
82974AC06	G3/8"	G3/8"	53	23	53	102
82974AD06	G1/2"	G1/2"	55	23	53	102
82974AE06	G3/4"	G3/4"	57	25	53	102

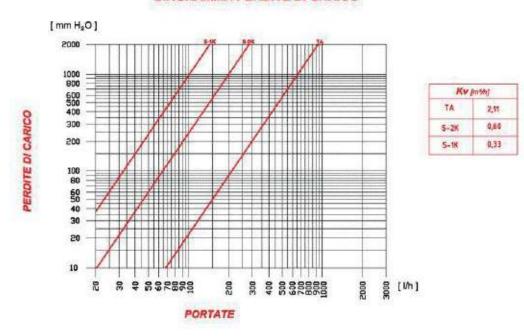
код	Ø1	Ø2	Α	В	С	D
82975AC06	G3/8"	G3/8"	50	23	58	107
82975AD06	G1/2"	G1/2"	51	24	58	107
82975AE06	G3/4"	G3/4"	53	25	58	108

Ky [m/h]

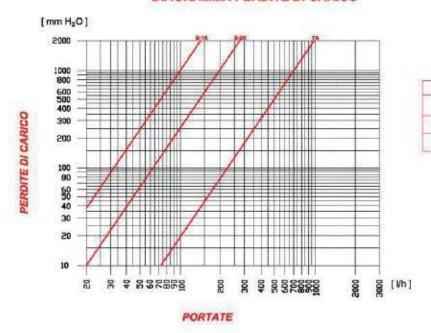
5-2K

5-1K

2,21


0,60

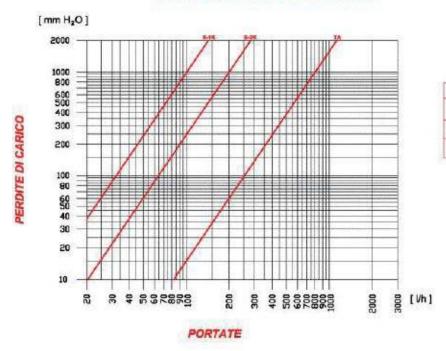
0,33


ГИДРАВЛИЧЕСКИЕ ХАРАКТЕРИСТИКИ

УГЛОВЫЕ ВЕНТИЛИ

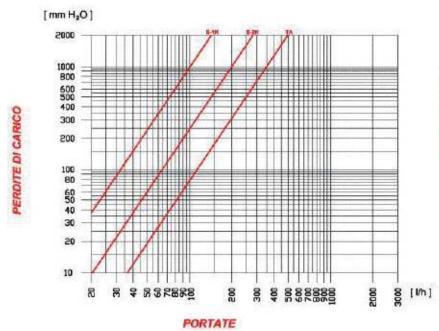
Терморегулирующие вентили угловые G3/8" - арт. 970-972-974 **DIAGRAMMA PERDITE DI CARICO**

Терморегулирующие вентили угловые G1/2" - арт. 970-972-974-966



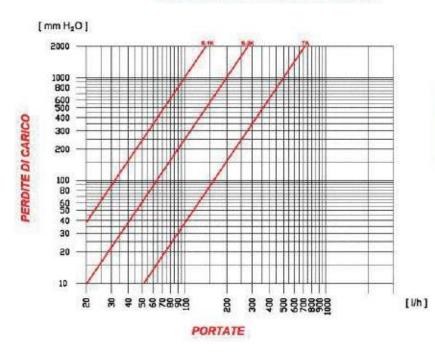
ГИДРАВЛИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Терморегулирующий угловой вентиль G3/4" - арт. 974

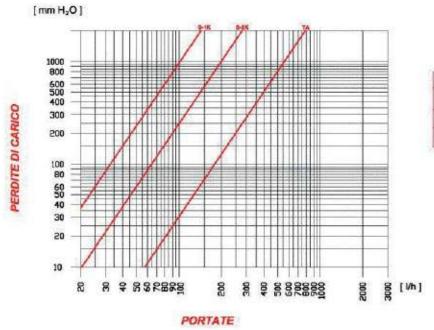

DIAGRAMMA PERDITE DI CARICO

Kvp	nMij.
TA	2,53
S-2K	0,60
S-1K	0,33

ПРЯМЫЕ ВЕНТИЛИ


Терморегулирующие вентили прямые G3/8" - арт. 971-973-975 **DIAGRAMMA PERDITE DI CARICO**

Kv jm/mj		
TA	1,12	
5-2K	0,60	
S-1K	0,33	



Прямой терморегулирующий вентиль G1/2" - Арт. 971-973-975-967 **DIAGRAMMA PERDITE DI CARICO**

Kv (arth)
TA 1,58
5-2K 0,60
S-1K 0,33

Прямой терморегулирующий вентиль G1/2" - Арт. 975 DIAGRAMMA PERDITE DI CARICO

KV [m³h]

TA 1,77

S-2K 0.60

S-1K 0.33